SistemPersamaan Linear Tiga Variabel (SPLTV) worksheets and online activities. Free interactive exercises to practice online or download as pdf to print.
Contents1 Sistem Persamaan Linear Tiga Variabel SPLTV CiriβCiri Sistem Persamaan Linear Tiga Variabel SPLTV HalβHal yang Berhubungan dengan Syarat SPLDV Memiliki Satu Cara Penyelesaian Share thisSistem Persamaan Linear Tiga Variabel β Sistem persamaan linear adalah bentuk perluasan dari sistem persamaan linear dua variabel. Yang dimana dalam sistem persamaan tiga variabel tersebut terdiri dari tiga persamaan yang masing-masingnya mempunyai tiga variabel yaitu X,Y, umum dari persamaan linear tiga variabel dalam X,Y,Z ditulis dalam rumus berikut Dengan a, b, c, d, e, f, g, h, i, j, k, dan l atau a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, dan d3 adalah bilangan-bilangan e, I, a1, a2, a3 = koefisien dari xb, f, j, b1, b2, b3 = koefisien dari yc, g, k, c1, c2, c3 = koefisien dari zd, h, i, d1, d2, d3 = konstantax, y, z = variabel atau peubahCiriβCiri Sistem Persamaan Linear Tiga Variabel SPLTVSebuah persamaan disebut dengan sistem persamaan linear tiga variabel bila persamaan itu memiliki karakteristik seperti berikut Memakai relasi tanda sama dengan =Mempunyai tiga variabelKetiga variabel tersebut mempunyai derajat satu berpangkat satuHalβHal yang Berhubungan dengan SPLTVSistem persamaan ini memuat komponen dan unsur yang selalu berkaitan dengan sistem persamaan linear tiga variabel. Ketiga komponen itu adalah suku, variabel, konstanta dan koefisien. Berikut penjelasannya masing-masing SukuAdalah bagian dari bentuk aljabar yang terdiri dari variabel, koefisien dan juga konstanta. Setiap suku dipisahkan dengan menggunakan tanda baca penjumlahan atau β y + 4z + 7 = 0, maka sukuβsuku dari persamaan tersebut yaitu 6x , -y, 4z dan peubah atau pengganti dari suatu bilangan yang secara umum dilambangkan dengan penggunaan huruf seperti X,Y, mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tulis dalam bentuk persamaan makaContoh apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + bilangan yang menyatakan banyaknya suatu jumlah variabel yang sejenis. koefisien disebut juga dengan bilangan yang ada di depan variabel, karena penulisan suatu persamaan koefisien ada di depan mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tuliskan ke dalam bentuk persamaan makaContoh apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + persamaan tersebut, maka dapat diketahui bahwa 2, 5 dan 6 merupakan koefisien di mana 2 merupakan koefisien x , 5 merupakan koefisien y serta 6 merupakan koefisien bilangan yang tak diikuti dengan variabel, sehingga akan memiliki nilai yang tetap/konstan dalam berapa saja nilai variabel atau + 5y + 6z + 7 = 0, dari persamaan tersebut konstantanya yaitu 7. Sebab, 7 nilainya tetap dan tidak terpengaruh dengan berapa pun SPLDV Memiliki Satu PenyelesaianSebuah sistem persamaan linier 3 variabel akan tepat mempunyai suatu penyelesaian atau satu himpunan penyelesaian apabila dapat memenuhi syarat atau ketentuan seperti di bawah iniTerdapat lebih dari satu atau ada tiga persamaan linier tiga variabel yang + y + z = 5x + 2y + 3z = 62x + 4y + 5z = 9Persamaan Linier Tiga Variabel yang membentuk Sistem Persamaan Linier Tiga Variabel, bukan merupakan Persamaan Linier Tiga Variabel yang β 3y + z = β52x + z β 3y + 5 = 04x β 6y + 2z = β10Ketiga persamaan di atas adalah sistem persamaan linear tiga variabel yang sama sehingga tidak mempunyai tepat satu himpunan Penyelesaian SPLDVBentuk umum dari sistem persamaan linier tiga variabel dapat dituliskan seperti Apabila nilai x = x0, y = y0, dan z = z0, ditulis dengan pasangan terurut x0, y0, z0, memenuhi SPLTV di atas, maka haruslah berlaku hubungan sebagai berikut Dalam hal yang seperti itu, x0, y0, z0 disebut sebagai penyelesaian sistem persamaan linear tersebut serta himpunan penyelesaiannya ditulis sebagai {x0, y0, z0}.Sebagai contoh, adanya SPLTV seperti di bawah ini2x + y + z = 12x + 2y β z = 33x β y + z = 11SPLTV di atas memiliki penyelesaian 3, 2, 4 dengan himpunan penyelesaiannya yaitu {2, 3, 4}.Untuk membuktikan kebenaran bahwa 3, 2, 4 adalah penyelesaian dari SPLTV tersebut, maka subtitusikanlah nilai dari x = 3, y = 2 dan z = 4 ke dalam persamaan 2x + y + z = 12, x + 2yβ z = 3 dan 3x β y + z = 11, sehingga akan kita dapatkanβ 23 + 2 + 4 = 6 + 2 + 4 = 12, benarβ 3 + 22 β 4 = 3 + 4 β 4 = 3, benarβ 33 β 2 + 4 = 9 β 2 + 4 = 11, benarPenyelesaian atau himpunan penyelesaian dari sebuah sistem persamaan linear tiga variabel SPLTV bisa di cari dengan menggunakan beberapa cara atau metode, antara lain dengan menggunakanMetode subtitusiMetode eliminasiMetode gabungan atau campuranMetode determinanMetode invers matriksSekian pembahasan materi sistem persamaan tiga variabel yang lengkap, semoga artikel ini berguna bagi anda yang mempelajari materi pelajaran sistem persamaan linear. Dan semoga artikel ini menambah pengetahuan anda dalam ilmu Juga Sistempersamaan linear tiga variabel dapat memiliki tepat satu selesaian a b c jika bidang-bidang pada sistem tersebut berpotongan tepat di satu titik gambar a. Bank soal matematika kelas x sma sistem persamaan linear tiga variabel spltv ibu guru susi sr. Contoh Soal Eliminasi 3 Variabel Pecahan Kumpulan Soal Pelajaran 3. Contoh Soal Dan Hallo adik-adik ajar hitung... kalian sudah sampai di materi Sistem Persamaan Linear Tiga Variabel atau sering disingkat SPLTV. Hari ini kita mau latihan soalnya ya... yuk kita mulai..Materi ini bisa kalian pelajari melalui channel youtube ajar hitung ya... Silahkan klik link video berikut1. Nilai z yang memenuhi persamaanadalah....a. -3b. -2c. -1d. 1e. 3JawabPada persamaan kedua, x + 2z = 3, maka x = 3 β 2zSubtitusikan x = 3 β 2z pada persamaan pertama 2x + y = 42x + y = 423 β 2z + y = 46 β 4z + y = 4-4z + y = 4 β 6-4z + y = -2 Eliminasikan -4z + y = -2 dengan persamaan 3 yaitu 3y β z = 5 atau diubah bentuknya menjadi βz + 3y = 5Jadi, jawabannya Jika {x0, y0, x0} memenuhi sistem pertidaksamaan linearMaka nilai x0 adalah...a. -6b. -3c. 1d. 3e. 6JawabEliminasikan persamaan 1 dan 2Eliminasikan persamaan 2 dan 3Eliminasikan -3y β 5z = -19 dan 9y + z = -13 Subtitusikan z = 5 pada persamaan -3y β 5z = -19-3y β 55 = -19-3y β 25 = -19-3y = -19 + 25-3y = 6y = 6/-3y = -2Subtitusikan y = -2 dan z = 5 pada persamaan x + 2y + z = 4x + 2-2 + 5 = 4x β 4 + 5 = 4x + 1 = 4x = 4 β 1x = 3Jadi, nilai dari x0 = 3Jawabannya Himpunan penyelesaian sistem persamaanadalah...a. {2, 1, -1}b. {-2, 1, 1}c. { Β½ , 1, -1}d. { - Β½ , -1, 1}e. { Β½ , 1, 1}JawabEliminasikan persamaan 1 dan 2Eliminasikan tapi kita ubah dulu posisinya menjadi dieliminasi dengan persamaan 3Subtitusikan z = -1 ke dalam persamaan Subtitusikan y = 1 dan z = -1 dalam persamaan Jadi, himpunan penyelesaiannya = { Β½ , 1. -1}Jawabannya Jika {x , y, z} merupakan himpunan penyelesaian dari, maka nilai x + z adalah...a. 5b. -3c. 1d. 2e. 3JawabPada persamaan pertama, x + y = 1, maka x = 1 β ySubtitusikan x = 1- y pada persamaan 32x + y + z = 421 β y + y + z = 42 β 2y + y + z = 42 β y + z = 4-y + z = 4 β 2-y + z = 2Eliminasikan βy + z = 2 dengan persamaan 2Subtitusikan y = 2 dalam persamaan y + z = 62 + z = 6z = 6 β 2z = 4jadi, nilai x + z = -1 + 4 = 3Jawaban yang tepat Nilai x β y dari sistem persamaan linearadalah...a. β 3 Β½ b. -2c. -1 Β½ d. 1e. 3 Β½ JawabPada persamaan 3, 6z = 3 z = 3/6 z = Β½ Subtitusikan z = Β½ pada persamaan 23y β 4z = -53y β 4 Β½ = -53y β 2 = -53y = -5 + 23y = -3y = -3/3y = -1Subtitusikan z = Β½ dan y = -1 pada persamaan 1x + y + z = 2Β½ + -1 + z = 2- Β½ + z = 2z = 2 + Β½ z = 2 Β½ Maka, nilai dari x β y = 2 Β½ - -1 = 2 Β½ + 1 = 3 Β½ Jawaban yang tepat Himpunan penyelesaian dari sistem persamaanadalah...a. {6, 7, 9}b. {7, 9, 6}c. { 1/6 , 1/7, 1/9}d. { 1/9, 1/7, 1/6}e. {9, 6, 7}JawabEliminasikan persamaan 1 dan 2Eliminasikan sebelumnya diubah posisi dulu menjadi dengan persamaan 3Subtitusikan y = 1/7 dalam persamaan Subtitusikan y = 1/7 dan z = 1/9 dalam persamaan Jadi, himpunan penyelesaiannya adalah {1/6 , 1/7 , 1/9 }.Jawaban yang tepat Jika {x, y, z} merupakan penyelesaian sistem pertidaksamaanMaka nilai dari 7x + y + z adalah...a. 12b. 14c. 16d. 18e. 60JawabPada persamaan pertama, x + y = 9 maka y = 9 β xSubtitusikan y = 9 β x pada persamaan 22y + 3z = 729 β x + 3z = 718 β 2x + 3z = 7-2x + 3z = 7 β 18-2x + 3z = -11Eliminasikan -2x + 3z = -11 dengan persamaan 3Subtitusikan z = -3/7 pada persamaan x + 2z = 4x + 2 -3/7 = 4x β 6/7 = 4x = 4 + 6/7x = 34/7Subtitusikan x = 34/7 pada persamaan x + y = 934/7 + y = 9y = 9 β 34/7y = 63/7 β 34/7y = 29/7Jadi, nilai dari 7x + y + z = 7 34/7 + 29/7 β 3/7 = 34 + 29 β 3 = 60Jawaban yang tepat Jika {x, y, z} adalah solusi untuk sistem pertidaksamaan linearMaka nilai x . y . z adalah...a. -8b. -4c. 2d. 4e. 8JawabPada persamaan 1, x + y = 1 maka y = 1 β xSubtitusikan y = 1 β x pada persamaan 2y + z = 31 β x + z = 3-x + z = 3 β 1-x + z = 2 atau bentuk lainnya z β x = 2Eliminasikan z β 2 = 2 dengan persamaan 3Subtitusikan x = 2 ke dalam persamaan z β x = 2z β 2 = 2z = 2 + 2z = 4Subtitusikan x = 2 dalam persamaan x + y = 12 + y = 1y = 1 β 2y = -1Maka, nilai dari x . y . z = 2 . -1 . 4 = -8Jawaban yang tepat Jika {x, y, z} merupkan solusi dari sistem persamaanMaka nilai dari x β y + 3z adalah...a. -2b. -6c. 6d. 2e. 6JawabPada persamaan 3, 8z = -8 maka z = -8/8 nilai z = -1Subtitusikan z = -1 pada persamaan 23y β 2z = -43y β 2-1 = -43y + 2 = -43y = -4 β 23y = -6y = -6/3y = -2subtitusikan z = -1 dan y = -2 pada persamaan 12x + y + z = -92x β 2 β 1 = -92x β 3 = -92x = -9 + 32x = -6x = -6/2x = -3Maka nilai dari x β y + 3z = -3 β -2 + 3-1 = -3 β -2 β 3 = -3 + 5 = 2Jawaban yang tepat Nilai x, y, z memenuhi sistem pertidaksamaan Maka nilai x + y z adalah...a. 1b. 3c. 5d. 9e. 15JawabPada persamaan 1x/2 = y/3 kalikan silang3x = 2y3x β 2y = 0x = 2y/3Subtitusikan x = 2y/3 pada persamaan 23x + 5y β 2z = 2232y/3 + 5y β 2z = 222y + 5y β 2z = 227y β 2z = 22Pada persamaan 1 berlakuy/3 = z/5 kalikan silang5y = 3z5y β 3z = 0Eliminasikan 7y β 2z = 22 dan 5y β 3z = 0Subtitusikan y = 6 dalam persamaan x = 2y/3x = 26/3x = 12/3x = 4Subtitusikan y = 6 dalam persamaan 5y β 3z = 056 β 3z = 030 β 3z = 0-3z = -30z = -30 -3z = 10Maka nilai dari x + y z = 4 + 6 10 = 1Jawaban yang tepat Jika {x, y, z} merupakan penyelesaian dari sistem persamaanMaka x y z sama dengan...a. 3 2 1b. 3 1 2c. 1 2 3d. 1 1 2e. 1 1 1JawabEliminasikan persamaan 1 dan 2Eliminasikan persamaan 2 dan 3Eliminasikan Subtitusikan x = 1 , y = 1 pada persamaan Maka nilai x y z = 1 1 1Jawaban yang tepat Jika Putri dan Dini bekerja bersama-sama, maka mereka dapat menyelesaikan sebuah pekerjaan dalam waktu 7 hari. Apabila Dini dan Tantri bekerja bersama-sama, maka mereka dapat menyelesaikan pekerjaan yang sama dalam waktu 3 hari, sedangkan apabila Putri dan Tantri bekerja bersama-sama, maka mereka dapat menyelesaikan pekerjaan tersebut dalam waktu 2 hari. Jika mereka bekerja sendiri-sendiri, maka Dini dapat menyelesaikan pekerjaan tersebut dalam waktu...a. 4 harib. 6 haric. 8 harid. 10 harie. 12 hariJawabMisalkanPutri = PDini = DTantri = TBerdasarkan uraian di atas, persamaan yang dapat dituliskan Pada persamaan pertama, P + D = 7, maka D = 7 β PSubtitusikan D = 7 β P pada persamaan keduaD + T = 37 β P + T = 3-P + T = 3 β 7-P + T = -4Eliminasikan βP + T = -4 dengan P + T = 2Subtitusikan P = 3 dalam persamaan D = 7 β PD = 7 β 3D = 4Jadi, Dini dapat menyelesaikan pekerjaan dalam 4 yang tepat Usia Krisna usia Tomi = 2 3. Usia Tomi usia Zaki = 6 5, sedangkan usia Krisna usia Zaki = 4 1. Apabila Krisna, Tomi, dan Zaki dimisalkan dengan x, y, dan z berturut-turut, maka bentuk persamaan linear yang terbentuk dari perbandingan usia ketiganya adalah...JawabMisalkanKrisna = xTomi = yZaki = zPernyataan soal di atas dapat dituliskanx/y = 2/3 kalikan silang3x = 2y y/z = 6/5 kalikan silang 5y = 6z x/z = 4/1 kalikan silangx = 4zMaka, persamaannya adalahJawaban yang benar Jumlah tiga buah bilangan sama dengan 25. Apabila bilangan-bilangan tersebut dilambangkan dengan a, b, dan c, maka penulisan model matematikanya adalah...a. a + b β c = 25b. a - b + c = 25c. a + b + c = 25d. a + b + c = -25e. a + b β c = -25JawabJumlah tiga buah bilangan sama dengan 25, maka a + b + c = 25Jawaban yang benar Panjang sebuah akuarium adalah penjumlahan dua kali tingginya dengan 2 kurangnya dari lebar. Model matematika yang paling tepat untuk menyatakan panjang akuarium adalah...a. p = l β 2t β 2b. p = l β 2t + 2c. p = 2t + 2 β ld. p = 2t + l β 2e. p = l β 2 β 2tJawabPanjang sebuah akuarium adalah penjumlahan dua kali tingginya dengan 2 kurangnya dari lebar, maka p = 2t + l β 2Jawaban yang benar Perbandingan uang miliki Dika dan Andin adalah 2 3. Perbandingan uang milik Andin dan Restu adalah 6 5. Jika jumlah uang Dika dan Andin lebih banyak dari uang Restu, maka uang Restu sebesar...a. = DAndin = ARestu = RKalikan ikuti garis merahD A R = 2 x 6 3 x 6 3 x 5D A R = 12 18 15Jumlah uang Dika dan Andin lebih banyak dari uang Restu, maka uang Restu = R = 15/12+18 x = 15/30 x = 1/2 x = + Β½ RR β Β½ R = R = = Β½ R = uang Restu = yang tepat Apabila x = 3, y = 2x, dan z = 1/3 y, nilai dari 2xy β 3z adalah...a. 30b. 36c. 54d. 63e. 72Jawabx = 3y = 2xy = 23y = 6z = 1/3 yz = 1/3 6z = 2Maka nilai dari 2xy β 3z = 236 β 32 = 36 β 6 = 30Jawaban yang tepat Tiga buah bilangan berjumlah 15. Bilangan pertama sama dengan tiga kurangnya dari bilangan ketiga, sedangkan setengahnya dari bilangan ketiga sama dengan bilangan kedua. Model matematika dari sistem persamaan tersebut adalah...JawabMisalkan ketiga bilangan itu adalah x, y, dan buah bilangan berjumlah 15, maka dituliskan x + y + z = 15Bilangan pertama sama dengan tiga kurangnya dari bilangan ketiga, maka dituliskan x = z β 3Setengahnya dari bilangan ketiga sama dengan bilangan kedua, maka dituliskan y = Β½ zMaka, persamaan yang benar dituliskanJawaban yang tepat Diketahui sistem persamaan linearHasil dari 10x β 14y + 4z adalah...a. 20b. 22c. 24d. 26e. 28JawabKita sederhanakan dulu persamaan di atasPersamaan 13x β 4y β 6z = 13Persamaan 26x + 2y β 3z = 7Persamaan 39x + 4y + 12z = -13Maka, sekarang persamaannya menjadiEliminasikan persamaan 1 dan 2Eliminasikan persamaan 1 dan 3Eliminasikan 15x β 12z = 27 dan 12x + 12z = 0Subtitusikan x = 1 dalam persamaan 12x + 12z = 0121 + 12z = 012z = -12z = -12/12z = -1Subtitusikan x = 1 dan z = -1 dalam persamaan 3x β 4y β 6z = 13 persamaan 131 β 4y β 6-1 = 133 β 4y + 6 = 139 - 4y = 13-4y = 13 β 9-4y = 4y = 4/-4y = -1Maka, hasil dari 10x β 14y + 4z = 101 β 14-1 + 4-1 = 10 + 14 β 4 = 20Jawaban yang benar Seorang pramusaji membawa 2 mangkuk pasta, 3 cup puding, dan 2 teh lemon ke salah satu meja pelanggan. Pasta, puding, dan teh lemon masing-masing termasuk pada kategori hidangan utama, penutup, dan minuman di input oleh kasir dengan lambang berturut-turut A, B, dan C, maka model matematika yang paling tepat untuk menuliskan pesanan pelanggan tersebut adalah...a. A + B + 2Cb. 2A + 3B + 2Cc. 2A β 3B + 2Cd. A β B + 2Ce. A + B β 2CJawabMisalkanPasta = APuding = BTeh lemon = C2 mangkuk pasta, 3 cup puding, dan 2 teh, dituliskan = 2A + 3B + 2CJawaban yang benar sampai disini ya latihan kita hari ini.. sampai bertemu di latihan selanjutnya... selamat belajar... Buat kalian yang ingin soalnya dibahas disini, silahkan kirim soal kalian ke email pediawidiymatematika123com_ Kumpulan soal Sistem persamaan dua tiga variabel linear, maupun kuadrat matematika tingkat SMA, baik dari tipe-tipe ujian Nasional, Ebtanas, UN, UMPTN, SPMB, maupun soal-soal harian koleksi matematika123[dot]com. Materi:-Sistem Persamaan-Sistem Persamaan Dua Variabel-Sistem Persamaan Tiga Variabel. Persamaan Dua variabel. Soal No. 1
Sepertipada bentuk bulatnya, persamaan dua varabel bentuk pecahan juga diselesaikan dengan cara eliminasi, substitusi atau gabungan keduanya. Soal No. 1 Diketahui sistem persamaan sebagai berikut: y = 2 / 3 x x + 1 / 2 y = 12 Tentukan nilai x dan y yang memenuhi kedua persamaan di atas! Pembahasan (i) y = 2 / 3 x (ii) x + 1 / 2 y = 12